Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(9): 5322-5331, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37540564

ABSTRACT

Epigallocatechin gallate (EGCG) is a compound with very high therapeutic potential in the treatment of osteoporosis and cancer. The disadvantages of this compound are its low stability and low bioavailability. Therefore, carriers for EGCG are sought to increase its use. In this work, new carriers are proposed, i.e., zeolites containing divalent ions of magnesium, calcium, strontium, and zinc in their structure. EGCG is retained on the carrier surface by strong interactions with divalent ions. Due to the presence of strong interactions, EGCG is released in a controlled manner from the carrier-ion-EGCG drug delivery system. The results obtained in this work confirm the effectiveness of the preparation of new carriers. EGCG is released from the carriers depending on the pH; hence, it can be used both in osteoporosis and in the treatment of cancer. The divalent ion used affects the sorption and release of the drug. The obtained results indicate the great potential of the proposed carriers and their advantage over the carriers described in the literature.


Subject(s)
Catechin , Zeolites , Drug Carriers , Drug Delivery Systems , Catechin/therapeutic use , Catechin/chemistry
2.
Materials (Basel) ; 16(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37374542

ABSTRACT

Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia. A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by preparing the carrier that releases the drug in lower doses but over a longer period of time. In this work, polydopamine-modified mesoporous silica with adsorbed zinc ions was used as a drug carrier. SEM images confirm the synthesis of spherical carrier particles. The particle size is close to 200 nm, allowing for its use in intravenous delivery. The zeta potential values for the drug carrier indicate that it is not prone to agglomeration. The effectiveness of drug sorption is indicated by a decrease in the zeta potential and new bands in the FT-IR spectra. The drug was released from the carrier for 15 h, so all of the drug can be released during circulation in the bloodstream. The release of the drug from the carrier was sustained, and no 'burst release' was observed. The material also released small amounts of zinc, which are important in the treatment of the disease because these ions can prevent some of the adverse effects of chemotherapy. The results obtained are promising and have great application potential.

3.
J Mol Model ; 24(1): 28, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29274012

ABSTRACT

Catalytic fields illustrate topology of the optimal charge distribution of a molecular environment reducing the activation energy for any process involving barrier crossing, like chemical reaction, bond rotation etc. Until now, this technique has been successfully applied to predict catalytic effects resulting from intermolecular interactions with individual water molecules constituting the first hydration shell, aminoacid mutations in enzymes or Si→Al substitutions in zeolites. In this contribution, hydrogen to fluorine (H→F) substitution effects for two model reactions have been examined indicating qualitative applicability of the catalytic field concept in the case of systems involving intramolecular interactions. Graphical abstract Hydrogen to fluorine (H→F) substitution effects on activation energy in [kcal/mol].

SELECTION OF CITATIONS
SEARCH DETAIL
...